
Using Platform LSF® Parallel
Version 5.0
June 2002

Comments to: doc@platform.com

mailto:jsmith@platform.com?Subject=LSF%20Documentation%20Feedback%20(Getting%20Started%20with%20LSF)

Copyright © 1994-2002 Platform Computing Corporation

All rights reserved.

We’d like to hear from
you

You can help us make this manual better by telling us what you think of the content,
organization, and usefulness of the information. If you find an error, or just want to make a
suggestion for improving this manual, please address your comments to doc@platform.com.

Your comments should pertain only to Platform LSF documentation. For product support,
contact support@platform.com.

Although the information in this document has been carefully reviewed, Platform Computing
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform
reserves the right to make corrections, updates, revisions or changes to the information in this
document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and
in other jurisdictions.

™ PLATFORM COMPUTING, and the PLATFORM and LSF logos are trademarks of Platform
Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other
jurisdictions.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective owners.

Last update June 5 2002

mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback
mailto:support@platform.com

Contents
Welcome . . 5

About This Guide . 6
Who should read this book . . 6
What you should already know . 6
Typographical conventions . . 6
Command notation . 6

Learning About Parallel Programming . 7
Related publications . . 7

Learning About Platform LSF . 8
World Wide Web and FTP . . 8
Platform LSF manuals . 8
Technical support . . 8
We’d like to hear from you . 8

1 About LSF Parallel . 9

What Is LSF Parallel? . 10

How Does LSF Parallel Work with Platform LSF? 11
MPI library . 11
PAM . 11
Platform LSF . 12

LSF Parallel Architecture . . 13
LSF Parallel components . 14

2 Using LSF Parallel . 15

Writing a Distributed Application . 16

Compiling and Linking the Application . . 17

Running the Application . . 18
Submitting to LSF . 18
Executing interactively . . 18

3 Building Parallel Applications . 19

Including the Header File . 20
Include syntax . 20

Compiling and Linking . 21
C programs . . 21
Fortran 77 programs . . 21

Building a Heterogeneous Parallel Application 22
LSF host type naming convention . 22
%a notation . . 23
Using Platform LSF Parallel 3

Contents

4

4 Submitting Parallel Applications . 25

Job Submission Methods . 26
Batch execution . . 26
Interactive execution . . 26

Batch Execution . 27

Batch Job Status . 28
Job states . 28
Parallel batch job behavior . 29

Running and Controlling Batch Jobs . 30
Submitting jobs (bsub) . . 30
The pam option . . 30
Suspending Jobs (bstop) . 30
Resuming Jobs (bresume) . . 31
Monitoring Job Status (bjobs) . 31
Terminating Jobs (bkill) . 32

Running Heterogeneous Parallel Applications 33

Interactive Execution . 34

The pam Command . 35
Writing and using a PAM script . 36
Run time job resource usage collection . . 36
Queue-level job control . 37
Runaway job cleanup . 37

Process Status Report . 38
Job states . 38

Getting Host Information . 39

A Vendor MPI Implementations . 41

HP MPI . 42
Automatic host allocation by LSF . 42
Running a job on a single host . 42
Running a job on multiple hosts . . 42
More details on mpirun . 42

SGI MPI . . 43
Compiling and linking your MPI program . 43
System requirements . 43
Configuring LSF to work with SGI MPI . 44
Using the -mpi option . 44
Signal propagation . 45
Limitations . 45

SUN HPC MPI . . 46

IBM MPI . . 48
Overview . . 48
Submitting POE jobs in LSF with LSF Parallel 48
Prerequisites . 48
Syntax . . 48
Example . 48

OpenMP . 49
Overview . . 49
Configuration . . 49
Job submission . 49

Index . 51
Using Platform LSF Parallel

Welcome
This document describes how to install, configure and use LSF Parallel. It also
describes how to compile and link, execute, interact and monitor parallel
applications submitted through Platform LSF.

For the most part, this guide does not repeat information that is available in
detail elsewhere but focuses on what is specific to using the LSF Parallel
system. References to more general sources are provided in “Related
publications” on page 7 in this preface.

Contents ◆ “About This Guide” on page 6

◆ “Learning About Parallel Programming” on page 7

◆ “Learning About Platform LSF” on page 8
Using Platform LSF Parallel 5

About This Guide

6

About This Guide

Who should read this book
This guide provides reference and tutorial material for:

◆ MPI programmers who want to compile and link MPI programs for use
with LSF Parallel

◆ LSF Parallel users who want to submit (execute), monitor, and interact with
parallel applications using Platform LSF

What you should already know
The users of this guide are expected to be familiar with:

◆ Programming in the C or Fortran 77 language

◆ Message Passing Interface (MPI) concepts

◆ Platform LSF

Typographical conventions

Command notation

Typeface Meaning Example

Courier The names of on-screen computer output, commands,
files, and directories.

The lsid command

Bold Courier What you type must be exactly as shown. Type cd /bin

Italics ◆ Book titles, new words or terms, or words to be
emphasized.

◆ Command-line place holders—replace with a real
name or value.

The queue specified by
queue_name

Notation Meaning Example

Quotes " or ' Must be entered exactly as shown. "job_ID[index_list]"

Commas , Must be entered exactly as shown. -C time0,time1

Ellipsis … The agument before the ellipsis can be repeated. Do
not enter the ellipsis.

job_ID ...

lower case italics The argument must be replaced with a real value you
provide.

job_ID

OR bar | You must enter one of the items separated by the bar.
You cannot enter more than one item. Do not enter
the bar.

[-h | -V]

Parenthesis () Must be entered exactly as shown. -X "exception_cond([para
ms])::action] ...

Option or variable in
square brackets []

The argument within the brackets is optional. Do not
enter the brackets.

lsid [-h]

Shell prompts ◆ C shell: %
◆ Bourne shell and Korn shell: $
◆ root account: #
Unless otherwise noted, the C shell prompt is used in
all command examples.

% cd /bin
Using Platform LSF Parallel

Welcome
Learning About Parallel Programming

Related publications
This guide focuses on using parallel applications with the LSF Parallel product.
It assumes familiarity with Platform LSF and the MPI standard. The following
materials provide useful background about using Platform LSF and MPI.

MPI and parallel
programming

The following documents are available at your local bookstore:

◆ MPI: The Complete Reference, by Marc Snir, Steve W. Otto, Steven Huss-
Lederman, David W. Walker, and Jack Dongarra (MIT Press, 1995)

◆ Using MPI, by William Gropp, Ewing Lusk and Anthony Skjellum (MIT
Press, 1994)

◆ Parallel Programming with MPI, by Peter Pacheco (Morgan Kaufmann
Publishers, Inc., 1997)

◆ Designing and Building Parallel Programs, Ian Foster (Addison-Wesley,
1995)

MPI standard This document is available on the world wide web. MPI: A Message-Passing
Interface Standard, Message Passing Interface Forum (University of
Tennessee, 1995)

www-unix.mcs.anl.gov/mpi/
Using Platform LSF Parallel 7

http://www-unix.mcs.anl.gov/mpi/

Learning About Platform LSF

8

Learning About Platform LSF

World Wide Web and FTP
The latest information about all supported releases of Platform LSF is available
on the Platform Web site at http://www.platform.com. Look in the Online
Support area for current README files, Release Notes, Upgrade Notices,
Frequently Asked Questions (FAQs), Troubleshooting, and other helpful
information.

The Platform FTP site (ftp.platform.com) also provides current README
files and Release Notes for all supported releases of Platform LSF.

If you have problems accessing the Platform web site or the Platform FTP site,
send email to info@platform.com.

Platform LSF manuals
All of the LSF manuals are available in HTML and PDF format on the Platform
Web site at www.platform.com/lsf_docs/:

Technical support
Contact Platform or your LSF Parallel vendor for technical support. Use one of
the following to contact Platform technical support:

Email support@platform.com

Toll-free phone ◆ 1-877-444-4LSF (+1 877 444 4573)

When contacting Platform, please include the full name of your company.

We’d like to hear from you
If you find errors in any Platform documentation, or you have suggestions for
improving it, please let us know. Contact doc@platform.com.
Using Platform LSF Parallel

http://www.platform.com
mailto:info@platform.com
http://www.platform.com/lsf_docs
mailto:support@platform.com
mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback

C H A P T E R

1
About LSF Parallel

Contents ◆ “What Is LSF Parallel?” on page 10

◆ “How Does LSF Parallel Work with Platform LSF?” on page 11

◆ “LSF Parallel Architecture” on page 13
Using Platform LSF Parallel 9

What Is LSF Parallel?

10
What Is LSF Parallel?
LSF Parallel is a fully supported commercial software system that supports the
programming, testing, and execution of applications in production
environments.

LSF Parallel is fully integrated with the Platform LSF, the de-facto industry
standard resource management software product, to provide load sharing in a
distributed system and batch scheduling for compute-intensive jobs. LSF
Parallel provides support for:

◆ Dynamic resource discovery and allocation (resource reservation) for
parallel batch job execution

◆ Transparent invocation of the distributed job processes across different
platforms such as AIX, HP, Linux, SGI, and Solaris

◆ Full job-level control of the distributed processes to ensure no processes
will become un-managed. This effectively reduces the possibility of one
parallel job causing severe disruption to an organization's computer service

◆ The standard MPI interface

◆ All major UNIX operating systems

◆ Full integration with Platform LSF, providing heterogeneous resource-
based batch job scheduling including job-level resource usage enforcement
Using Platform LSF Parallel

Chapter 1
About LSF Parallel
How Does LSF Parallel Work with Platform LSF?
LSF Parallel adopts a layered approach, shown below, that is fully integrated
with Platform LSF. In addition to LSF system resources, the following
components make up LSF Parallel:

◆ The MPI Library

◆ The Parallel Application Manager (PAM)

◆ Parallel Task Launcher

MPI library
The Message Passing Interface (MPI) library is a message-passing library that
must be linked to the parallel applications that are to be run in Platform LSF.
The MPI library translates MPI message calls to messages for the machine-
dependent layer and it interfaces the user application to PAM.

See Appendix A, “Vendor MPI Implementations” for details.

PAM
The Parallel Application Manager (PAM) is the point of control for LSF Parallel.
PAM is fully integrated with Platform LSF. PAM interfaces the user application
with LSF. For all parallel application processes (tasks), PAM:

◆ Maintains the communication connection map

◆ Monitors and forwards control signals

◆ Receives requests to add, delete, start, and connect tasks

◆ Monitors resource usage while the user application is running

◆ Enforces job-level resource limits

◆ Collects resource usage information and exit status upon termination

◆ Handles standard I/O
Using Platform LSF Parallel 11

How Does LSF Parallel Work with Platform LSF?

12
Platform LSF
Platform LSF is a sophisticated resource-based batch job scheduling system. It
accepts user jobs and holds them in queues until suitable hosts are available
and resource requirements are satisfied. Host selection is based on up-to-the-
minute load information provided by the master Load Information Manager
(LIM).

LSF runs user jobs on batch server hosts. It has sophisticated controls for
sharing hosts with interactive users; there is no need to set aside dedicated
hosts for processing batch jobs.

See Administering Platform LSF and the Platform LSF Reference for a detailed
description of Platform LSF.
Using Platform LSF Parallel

Chapter 1
About LSF Parallel
LSF Parallel Architecture
LSF Parallel takes full advantage of the resources of LSF for resource selection
and batch job process invocation and control:

1 User submits a parallel batch job to LSF

2 MBD retrieves a list of suitable execution hosts from the master LIM

3 MBD allocates (schedules, reserves) the execution hosts for the parallel
batch job

4 MBD dispatches the parallel batch job to the SBD on the first execution
host that was allocated to the batch job

5 SBD starts PAM on the same execution host

6 PAM starts RES on each execution host allocated to the batch job

7 RES starts the tasks on each execution host

This process is illustrated in the following diagram:

Platform LSF also supports interactive parallel job submission. The process is
similar to that shown in the previous figure, except the user request is
submitted directly to PAM which makes a simple placement query to LIM. Job
queuing and resource reservations are not supported in interactive mode.
Using Platform LSF Parallel 13

LSF Parallel Architecture

14
LSF Parallel components

User request Batch job submission to LSF using the bsub command.

mbatchd Master Batch Daemon (MBD) is the policy center for LSF. It maintains
information about batch jobs, hosts, users, and queues. All of this information
is used in scheduling batch jobs to hosts.

LIM Load Information Manager is a daemon process running on each execution
host. LIM monitors the load on its host and exchanges this information with
the master LIM.

The master LIM resides on one execution host and collects information from
the LIMs on all other hosts in the LSF cluster. If the master LIM becomes
unavailable, another host will automatically take over.

For batch submission the master LIM provides this information to the MBD.

For interactive execution the master LIM provides simple placement advice.

sbatchd Slave Batch Daemons (SBDs) are batch job execution agents residing on the
execution hosts. SBD receives jobs from the MBD in the form of a job
specification and starts RES to run the job according the specification. SBD
reports the batch job status to the MBD whenever job state changes.

PAM The Parallel Application Manager is the point of control for LSF Parallel. PAM
is fully integrated with Platform LSF. PAM interfaces the user application with
the LSF system.

If PAM or its host crashes, each RES will terminate all tasks under its
management. This avoids the problem of orphaned processes.

RES The Remote Execution Servers reside on each execution host. RES manages all
remote tasks and forwards signals, standard I/O, resources consumption data,
and parallel job information between PAM and the tasks.

Application task The individual process of a parallel application

Execution hosts The most suitable hosts to execute the batch job as determined by LSF

First execution
host

The host name at the top of the execution host list as determined by LSF
Using Platform LSF Parallel

C H A P T E R

2
Using LSF Parallel

This chapter introduces the concepts needed to start using LSF Parallel. They are:
compiling, linking, and submitting parallel applications. The example used in this
chapter is a distributed version of the C program Hello World named myjob.

If the commands cannot be executed or the man pages cannot be viewed, the
appropriate directories may need to be added to the systems path; ask your system
administrator for help.

Contents ◆ “Writing a Distributed Application” on page 16

◆ “Compiling and Linking the Application” on page 17

◆ “Running the Application” on page 18
Using Platform LSF Parallel 15

Writing a Distributed Application

16
Writing a Distributed Application
This example program, written in C, is a distributed version of the Hello World
program named myjob. Use an editor to enter the code for this application.
After the code is entered, save it in a file named myjob.c

Note that the command-line argument should be passed inside the program.

/*
* File: myjob.c
*/
#include <stdio.h>
#include "mpi.h" /* MPI header file */

int
main(int argc, char **argv)
{

int myrank; /* Rank of this process */
int n_processes; /* Number of Processes */
int srcrank; /* Rank of the Sender */
int destrank; /* Rank of the receiver */
char mbuf[512]; /* Message buffer */
MPI_Status mstat; /* Return Status of an MPI operation */

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &n_processes);

 if (myrank != 0) {
 sprintf(mbuf, "Hello, from process %d!", myrank);

destrank = 0;
 MPI_Send(mbuf, strlen(mbuf)+1, MPI_CHAR,

 destrank, 90,MPI_COMM_WORLD);
 } else {

 for (srcrank = 1; srcrank < n_processes; srcrank++) {
 MPI_Recv(mbuf, 512, MPI_CHAR,

 srcrank, 90, MPI_COMM_WORLD,&mstat);
 printf("From process %d: %s\n", srcrank, mbuf);

 }
 }
 MPI_Finalize();

}

Using Platform LSF Parallel

Chapter 2
Using LSF Parallel
Compiling and Linking the Application
After the example program is entered and saved as myjob.c, use the mpicc
script to compile and link the application. The mpicc script is used in a similar
manner to other UNIX-based C compilers. This script provides the options and
special libraries needed to compile and link a parallel application for the
Platform LSF environment.

To compile and link the source code in the myjob.c file in one step, enter the
following command:

% mpicc myjob.c -o myjob

The binary created is called myjob.
Using Platform LSF Parallel 17

Running the Application

18
Running the Application

Submitting to LSF
To submit the parallel application myjob to Platform LSF, requesting three
processors, enter the following command:

% bsub -n 3 pam myjob
Job <1288> is submitted to default queue <normal>.

This command creates three processes and each runs an instance of myjob.
The bsub command has a number of command line options, which are
discussed in more detail in “Running and Controlling Batch Jobs” on page 30.
To view the status of the parallel batch job, enter the following command:

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1288 user1 PEND normal hopper host1 myjob Apr 16 14:43

host2
host3

The bjobs command has a number of command line options, which are
discussed in more detail in “Monitoring Job Status (bjobs)” on page 31.

Executing interactively
To interactively execute the parallel application myjob on three processors,
enter the following command

% pam -n 3 myjob
From process 1: Hello, from process 1!
From process 2: Hello, from process 2!

TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME
=== ========= ============ ======================== ==================
0001 host1 myjob Done 04/16/98 15:05:56
0002 host2 myjob Done 04/16/98 15:05:56
0003 host3 myjob Done 04/16/98 15:05:56

The pam command has a number of command line options, which are
discussed in more detail in “The pam Command” on page 35.
Using Platform LSF Parallel

C H A P T E R

3
Building Parallel Applications

LSF Parallel provides tools to help build a parallel application to take full advantage
of Platform LSF. Most parallel applications can be reused by simply re-linking with
the PAM-aware MPI library, and in some instances there may not even be a need
to re-compile.

This chapter discusses the basic steps in building a parallel application, the basic
structure of the application and how it is compiled and linked.

This chapter focuses on building a parallel application to make optimal use of
Platform LSF. It assumes familiarity with Platform LSF and standard MPI. Therefore
it does not discuss writing MPI programs.

Contents ◆ “Including the Header File” on page 20

◆ “Compiling and Linking” on page 21

◆ “Building a Heterogeneous Parallel Application” on page 22
Using Platform LSF Parallel 19

Including the Header File

20
Including the Header File
A set of PAM-aware header files are included with Platform LSF installation.
They are typically located in the LSF_INCLUDEDIR/lsf/mpi/ directory. The
header files contain the MPI definitions, macros, and function prototypes
necessary for using LSF Parallel.

Include syntax
The include syntax must be placed at the top of any parallel application that
calls MPI routines. The include statement looks like this in C applications:

#include <mpi.h>

In Fortran 77 applications:

INCLUDE "mpif.h"

If the header files are not located in the LSF_INCLUDEDIR/lsf/mpi/
directory, check with your system administrator.
Using Platform LSF Parallel

Chapter 3
Building Parallel Applications
Compiling and Linking
LSF Parallel provides a set of scripts that help with the creation of executable
objects. They are:

◆ mpicc for C programs

◆ mpif77 for Fortran 77 programs.

These scripts provide the options and special libraries needed to compile and
link MPI programs for use with LSF Parallel. Applications are linked to system-
dependent libraries and the appropriate MPI library.

C programs
The LSF Parallel C compiler, mpicc, is used to compile MPI C source files. It is
used in a similar manner to other UNIX-based C compilers. For example, to
compile the sample program contained in a file myjob.c enter:

% mpicc -c myjob.c

This command produces the myjob.o that contains the object code for this LSF
Parallel source file. To link the myjob.o object file with the LSF Parallel
libraries to create an executable, enter:

% mpicc -o myjob myjob.o

As with most C compilers, the -o flag specifies that the name of the executable
produced by the linker is to be myjob. The C source file can be compiled and
linked in one step using the following command:

% mpicc myjob -o myjob

Fortran 77 programs
The LSF Parallel Fortran 77 compiler, mpif77, is used to compile MPI Fortran
77 source files. It is used in a similar manner to other UNIX-based Fortran 77
compilers. For example, to compile the sample program contained in a file
myjob.f enter:

% mpif77 -c myjob.f

This command produces the myjob.o that contains the object code for this LSF
Parallel source file.

To link the myjob.o object file with the LSF Parallel libraries to create an
executable, enter:

% mpif77 -o myjob myjob.o

As with most Fortran 77 compilers, the -o flag specifies that the name of the
executable produced by the linker is to be myjob.

The Fortran 77 source file can be compiled and linked in one step using the
following command:

% mpif77 myjob -o myjob
Using Platform LSF Parallel 21

Building a Heterogeneous Parallel Application

22
Building a Heterogeneous Parallel Application
LSF Parallel provides a host type substitution facility to allow a heterogeneous
multiple-architecture distributed application to be submitted to LSF. The
following steps outline how to build and deploy a heterogeneous application:

1 Design the parallel application.

2 Compile the application on all LSF host-type architectures that will be used
to support this application.

The binaries must either be named with valid LSF host-type extensions or
placed in directories named with valid LSF host-type path names.

3 Place binaries in the appropriate shared file system or distribute them
accordingly.

4 Use the %a annotation to submit the parallel application to LSF.

LSF host type naming convention
Binaries must be compiled on the target host type architectures. The binary
must be named using a valid LSF host type string as the extension to its name
or the name of a directory in its path (lshosts displays a list of valid LSF host
types). When the %a notation is used to submit a parallel application to LSF the
target host type string is substituted.

All binaries for a specific application must be named using the same host type
substitution format (i.e., binary extension or path name).

For example, the following binaries are named with appropriate host type
extensions to identify the target platform on which they are to run. These
binaries are named to use Sun Solaris and RS6000 architecture machines:

◆ myjob.SUNSOL
◆ myjob.RS6K

For example, the following binaries are named with appropriate path names
to identify the target platform on which they are to run. These binaries are
named to use Sun Solaris and RS6000 architecture machines:

◆ /user/batch/SUNSOL/myjob
◆ /user/batch/RS6K/myjob
Using Platform LSF Parallel

Chapter 3
Building Parallel Applications
%a notation
After a parallel application is submitted to LSF, the Parallel Application
Manager (PAM) replaces the %a annotation with the appropriate LSF host type
string. PAM then launches the individual tasks of the application on the remote
hosts using the correct binaries. Use the lshosts command to determine
which LSF hosts are available. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
host1 SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
host2 RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)

For example, to submit the myjob application from the same directory using
LSF host type extensions the following command is used:

% pam -n 2 myjob.%a

PAM will make the following substitutions for the %a notation:

◆ myjob.SUNSOL
◆ myjob.RS6K

For example, to submit the myjob application from different directories using
host type path names the following command is be used:

% pam -n 2 /user/batch/%a/myjob

PAM will make the following substitutions for the %a notation:

◆ /user/batch/SUNSOL/myjob
◆ /user/batch/RS6K/myjob
Using Platform LSF Parallel 23

Building a Heterogeneous Parallel Application

24
 Using Platform LSF Parallel

C H A P T E R

4
Submitting Parallel Applications

Contents ◆ “Job Submission Methods” on page 26

◆ “Batch Execution” on page 27

◆ “Interactive Execution” on page 34
Using Platform LSF Parallel 25

Job Submission Methods

26
Job Submission Methods
LSF Parallel supports batch submission of parallel applications (batch jobs)
using the facilities of Platform LSF. Interactive execution of parallel applications
is also supported under control of the Parallel Application Manager (PAM).

An extensive and flexible set of tools is provided that allows parallel
applications to be submitted through Platform LSF. Parallel applications can
also be executed interactively under control of the Parallel Application
Manager (PAM). These tools allow the specification of how, when, and where
a parallel application is to be run.

Batch execution
When submitting a parallel batch job, LSF Parallel uses the advanced features
of LSF to select, submit, and interact with the individual tasks of the parallel
batch job. The batch job is submitted to a queue using the bsub command and
LSF attends to the details.

A parallel batch job is submitted to a queue, where it waits until it reaches the
front of the queue and the appropriate resources become available. Then the
batch job will be dispatched to the most suitable hosts for execution. This
sophisticated queuing system allows batch jobs to run as soon as the suitable
host resources becomes available.

To use the bsub command to submit a parallel batch job to LSF, see “Running
and Controlling Batch Jobs” on page 30.

Note The batch job may not be run immediately, it may queued until the appropriate
resources become available.

Interactive execution
When interactively executing a parallel batch job, the pam command is used to
invoke PAM. When submitting batch jobs using the pam command, LSF is
bypassed; the jobs are not queued. Batch jobs are run immediately upon
entering the command if the specified resource requirements are met. If the
resources are not available the job is not run.

Since the jobs do not wait, interactive job execution is beneficial for debugging
parallel applications. Direct interaction is supported. All the input and output
is handled transparently between the local and execution hosts.

To use the pam command to execute a parallel batch job interactively, see
“Interactive Execution” on page 34.
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
Batch Execution
LSF Parallel uses the features of Platform LSF to select the most suitable hosts,
submit, and interact with parallel batch jobs. The batch job is submitted to a
queue using the bsub command, as described in “Running and Controlling
Batch Jobs” on page 30, and Platform LSF and LSF Parallel attend to the rest.

Like serial batch jobs, parallel batch jobs pass through many states. See “Batch
Job Status” on page 28.

In this section ◆ “Batch Job Status” on page 28

◆ “Running and Controlling Batch Jobs” on page 30

◆ “Running Heterogeneous Parallel Applications” on page 33
Using Platform LSF Parallel 27

Batch Job Status

28
Batch Job Status
Each batch job submitted to LSF passes through a series of states until the job
completes normally (success) or abnormally (failure). The bjobs command
allows the status of the batch jobs to be monitored; see “Monitoring Job Status
(bjobs)” on page 31. The ability to monitor batch job status extends to the
individual processes (tasks) of the parallel application.

Job states
The following diagram shows the possible states a batch job can pass through
when submitted to LSF. The diagram also shows the activities and commands
that cause the state transitions. The batch job states are described below.

PEND A batch job is pending when it is submitted (using the bsub command) and
waiting in a queue. It remains pending until it moves to the head of the queue
and all conditions for its execution are met. The conditions may include:

◆ Start time specified by the user when the job is submitted

◆ Load conditions on qualified hosts

◆ Time windows during which:

❖ The queue can dispatch jobs

❖ Qualified hosts can accept jobs

◆ Relative priority to other users and jobs

◆ Availability of the specified resources

RUN A batch job is running when it has been dispatched to a host.

DONE A batch job is done when it has normally completed its execution.

SSUSP

RUN

USUSP

EXIT

PSUSP

PEND
bsub

bstop

bresume

bkill
or abnormal
exit

DONE

suitable host found

migration

normal
completion

host OK host overloaded

bkill

bstop bresume

bkill
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
PSUSP The job owner or the LSF administrator can suspend (using the bstop
command) a batch job while it is pending.

Also, the job owner or the LSF administrator can resume (using the bresume
command) a batch that is in the PSUSP state, then the batch job state transitions
to PEND.

USUSP The job owner or the LSF administrator can suspend (using the bstop
command) a batch job after it has been dispatched.

Also, the owner or the LSF administrator can resume (using the bresume
command) a batch that is in the USUSP state, then the batch job state transitions
to SSUSP.

SSUSP A batch job can be suspended by LSF after it has been dispatched. This is done
if the load on the execution host or hosts becomes too high in order to
maximize host performance or to guarantee interactive response time.

LSF suspends batch jobs according to their priority unless the scheduling policy
associated with the job dictates otherwise. A batch job may also be suspended
if the job queue has a time window and the current time exceeds the window.

LSF can later resume a system suspended (SSUSP) job if the load condition on
the execution host decreases or the time window of the queue opens.

EXIT A batch job can terminate abnormally (fail) from any state for many reasons.
Abnormal job termination can occur when:

◆ Cancelled (using the bkill command) by owner or LSF administrator
while in PEND, RUN, or USUSP state

◆ Aborted by LSF because job cannot be dispatched before a termination
deadline

◆ Fails to start successfully (e.g., the wrong executable was specified at time
of job submission)

◆ Crashes during execution

Parallel batch job behavior
◆ When one task exits with a none-zero return value all the other tasks will

run until they complete (DONE) or fail (EXIT)

◆ When one task is killed by a signal or core dumps, all the other tasks will
be shut down
Using Platform LSF Parallel 29

Running and Controlling Batch Jobs

30
Running and Controlling Batch Jobs

Submitting jobs (bsub)
Use the bsub command to submit parallel batch jobs to LSF. The syntax for
using bsub when submitting parallel applications is the same as LSF with the
addition of the pam option:

bsub [options] pam [options] job

The pam option
The pam options used with the bsub command are a subset of the pam
command options, see “The pam Command” on page 35. Since LSF does all of
the resource allocation and scheduling, the pam options -m, -f, and -n are not
necessary and are ignored by the bsub command. The syntax for bsub pam is:

pam [-h][-V][-t][-v]

The bsub pam options are:

For example, the following command submits a parallel batch job named
myjob to LSF and requests four processors of any type to run the job:

% bsub -n 4 pam myjob

When the parallel batch job named myjob is submitted to LSF and dispatched
to host1, host2, host3 and host4, the bjobs command will display:

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
713 user1 RUN batch host99 host1 myjob Sep 12 16:30

host2
host3
host4

Suspending Jobs (bstop)
Use the bstop command to suspend parallel batch jobs running in LSF:

bstop jobId

For example, the following command suspends the parallel batch job named
myjob running in LSF with job ID of 713:

% bstop 713

Option Description

-h Print command usage to stderr and exit.

-V Print LSF version to stderr and exit.

-t Suppress the printing of the process status summary on job completion.

-v Specifies the job is to be run in verbose mode. The names of the selected
hosts are displayed.
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
When the parallel batch job named myjob is suspended the bjobs command
will display the batch job state of USUSP:

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
713 user1 USUSP batch host99 host1 myjob Sep 12 16:32

host2
host3
host4

Resuming Jobs (bresume)
Use the bresume command to resume suspended parallel batch jobs running
in LSF:

bresume jobID

For example, the following command resumes the suspended parallel batch
job named myjob running in LSF with job ID of 713:

% bresume 713

When the parallel batch job named myjob is resumed the bjobs command will
display the batch job state of RUN or PEND:

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
713 user1 RUN batch host99 host1 myjob Sep 12 16:34

host2
host3
host4

Monitoring Job Status (bjobs)
Use the bjobs command to view the running status and resource usage of
parallel batch jobs running in LSF:

bjobs [options]

For example, the following command displays the running status and resource
usage of the jobs running in LSF:

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
713 user1 RUN batch host99 host1 myjob Sep 12 16:34

host2
host3
host4
Using Platform LSF Parallel 31

Running and Controlling Batch Jobs

32
For example, the following command uses the -l option to display run-time
resource usage (CPU, memory, and swap) as well as the running status of the
jobs running in LSF:

% bjobs -l
Job Id <713>, User, Project, Status, Queue, Interactive pseudo-terminal mode, Command
<myjob>

Thu Sep 12 16:39:17: Submitted from host <host99>, CWD <$HOME/Work/utopia/pass/
pam>, 2-4 Processors Requested;

Thu Sep 12 16:39:18: Started on 4 Hosts/Processors host1 host2 host3 host4,
Execution Home < /pcc/s/user1, Execution CWD /pcc/s/user1/W
ork/utopia/pass/pam;

Thu Sep 12 16:40:41: Resource usage collected.
The CPU time used is 2 seconds.
MEM: 281 Kbytes; SWAP: 367 Kbytes
PGIDs: 4 PIDs: 4, 5, 6
PGIDs: 10 PIDs: 10, 11
PGIDs: 20 PIDs: 20, 21
PGIDs: 30 PIDs: 30, 31

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

nresj
loadSched -
loadStop -

Terminating Jobs (bkill)
Use the bkill command to terminate parallel batch jobs running in LSF:

bkill jobID [options]

For example, the following command terminates the parallel batch job named
myjob running in LSF with a job ID of 713:

% bkill 713

When the parallel batch job named myjob is terminated the bjobs command
will display the batch job state of EXIT:

% bkill 713
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
713 user1 EXIT batch host99 host1 myjob Sep 12 16:30

host2
host3
host4

The time taken to terminate a parallel batch job varies and depends on the
number of parallel processes.
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
Running Heterogeneous Parallel Applications
LSF Parallel provides an LSF host type substitution facility to allow a
heterogeneous multiple-architecture distributed application to be submitted to
LSF.

Assumptions 1 The binary will run on each specified platform, or a binary exists for each
platform.

2 The binaries for the parallel application are specified using the %a notation
format, see “Building a Heterogeneous Parallel Application” on page 22.

Examples For example, using the LSF host type extension format to specify the batch job
named myjob to run on any two available processors having either Sun Solaris
(SUNSOL) or RS6000 (RS6K) architectures, the following command can be
used:

% bsub -n 2 pam myjob.%a

To specify SUNSOL and RS6K in an environment with other architectures, the
following command is specified with the -R (resource) option:

% bsub -n 2 -R "type==SUNSOL || type==RS6K" pam myjob.%a

For both these examples, the Parallel Application Manager (PAM) substitutes
the %a notation with the correct LSF host type extension. The binaries used are
named:

◆ myjob.SUNSOL
◆ myjob.RS6K

For example, using the LSF host type path name format to specify the batch
job named myjob to run on any two processors having either SUNSOL or RS6K
architectures, the following command can be used:

% bsub -n 2 pam /user/batch/%a/myjob

To specify SUNSOL and RS6K in an environment with other architectures, the
following command is specified with the -R (resource) option:

% bsub -n 2 -R "type==SUNSOL || type==RS6K" pam /user/batch/%a/myjob

For both these examples, the Parallel Application Manager (PAM) substitutes
the %a notation with the correct LSF host type path name. The paths used to
select the binaries are:

◆ /user/batch/SUNSOL/myjob
◆ /user/batch/RS6K/myjob
Using Platform LSF Parallel 33

Interactive Execution

34
Interactive Execution
LSF Parallel uses the Parallel Application Manager (PAM) to control the
execution of parallel batch jobs interactively. Batch jobs are executed
interactively using the pam command, see “The pam Command” on page 35.
When submitting batch jobs using the pam command, Platform LSF is bypassed,
the jobs are not queued. Batch jobs are run immediately upon entering the
command if the resource requirements specified are met. If the resources are
not available the job is not run. Since the jobs do not wait, interactive job
execution is beneficial for debugging parallel applications.

To successfully execute an interactive parallel batch job, the pam command
must be reissued at a time when the resources are available. If specific
resources are not requested Platform LSF will run the batch job on the least
loaded hosts that meet the batch jobs criteria.

Direct interaction is supported. All the input and output is handled
transparently between local and execution hosts. All job control signals (e.g.,
ctrl+x, ctrl+z, and ctrl+l) are propagated to the execution hosts; this
allows interaction with the job as if it were a being executed locally.

In this section ◆ “The pam Command” on page 35

◆ “Process Status Report” on page 38

◆ “Getting Host Information” on page 39
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
The pam Command
The pam command is used to interactively execute parallel batch jobs in LSF
Parallel. A subset of the pam command is used as a command option for the
bsub command (see “Submitting jobs (bsub)” on page 30). The syntax for
using the pam command is:

pam [-h][-V][-i][-t][-v]
[-server_addr location]
 [| -server_jobid location]
 [| -server_jobname location]
{-m "host ..." }
{| [-R req] -n num }
job [arg ...]

Option Description

-h Print command usage to stderr and exit.

-V Print LSF version to stderr and exit.

-i Specifies interactive operation mode, the user will be asked if application
is to be executed on all hosts.
If yes (y) the task is started on all hosts specified in the list.
If no (n) the user must interactively specify the hosts.

-t Suppress the printing of the job task summary report to the standard
output at job completion.

-v Specifies the job is to be run in verbose mode. The names of the selected
hosts are displayed.

-server_addr location Specifies the location of the PAM server. The location is specified in the
hostname:port_no format.

-server_jobid location Specifies the location of the PAM server. The location is specified using
the jobid for the server PAM job.

-server_jobname
location

Specifies the location of the PAM server. The location is specified using
the jobname for the server PAM job.

-m "host …" Specifies the list of hosts on which to run the parallel batch job tasks. The
number of host names specified indicates the number of processors
requested.
This option cannot be used with options -R or -n, and is ignored when
pam is used as a bsub option.

[-R req] -n num Specifies the number of processors required to run the parallel job.
This option cannot be used with option -m, and is ignored when pam is
used as a bsub option.

-R req Default: r15s:pg
This option is ignored when pam is used as a bsub option.

job [arg …] The name of the parallel job to be run.
This must be the last argument on the pam command line.
Using Platform LSF Parallel 35

The pam Command

36
For example, the following command executes the parallel batch job named
myjob on Platform LSF requesting four processors of any type:

% pam -n 4 myjob
TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME
==== ========== ================ ======================== ==================
1 host1 myjob Done 03/31/98 10:31:58
2 host2 myjob Done 03/31/98 10:31:59
3 host3 myjob Done 03/31/98 10:31:59
4 host4 myjob Done 03/31/98 10:31:58

For example, the following command uses the -m option to execute the
parallel batch job named myjob on host1, host2, and host3:

% pam -m "host1 host2 host3" myjob
TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME
==== ========== ================ ======================== ==================
1 host1 myjob Done 03/31/98 10:31:58
2 host2 myjob Done 03/31/98 10:31:59
3 host3 myjob Done 03/31/98 10:31:59

Writing and using a PAM script
A PAM script is a shell script that runs a series of PAM jobs and sequential jobs.
The PAM script can be any UNIX shell script or perl script.

Example The following file, pamScript, runs three PAM jobs:

File: pamScript
#!/bin/sh

/bin/echo "First run ... "
pam -mpi -np 128 a.out
/bin/echo "Second run ... "
pam -mpi -np 128 a.out
/bin/echo "Third run ... "
pam -mpi -np 128 a.out

The script pamScript then runs as one batch job:

bsub -n 128 -R "select[mem >= 512 && swap > 1024]" -o myFile
pamScript

Each parallel job started by pam runs sequentially and each can handle several
MPI jobs.

Run time job resource usage collection
Resource usage is collected and accumulated separately for each instance of
PAM that is running for the following resources:

◆ CPU Time

◆ Memory and Swap Space

◆ Process IDs and Process Group IDs
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
Queue-level job control
User-defined job controls normally run on sequential LSF jobs. LSF Parallel also
supports job control actions on processes contained in parallel jobs.

PID information
file

SBD saves the process IDs for LSF Parallel jobs in a PID information file in the
/tmp directory. The name of the file is in the form:

/tmp/.job_file_name.jobID.pid_info

The file name is put into the LSF system environment variable
LSB_PIDINFO_FILE. Your job control program can use the function
getenv("LSB_PIDINFO_FILE") to get the PID information file name.

SGI IRIX array
services

On SGI IRIX, you can use array services commands to control the jobs with
queue-level job controls or signals according to their process IDs.

For example, you can use the array ps command to find a job's array handle
and use other array commands to do job control.

See the IRIX system documentation and the array_services(5) man page for
more information about array services, the array services daemon and array
session handling.

Example For example, LSF creates the following PID information file for a PAM script
job:

% ls -a /tmp
.963933993.2244.pidInfo

The contents of the process information file might look like the following:

% cat /tmp/.963933993.2244.pidInfo
 726694 678 726694
 732073 726694 726694
 732286 726694 726694

The first ID is process ID, the second is the parent process ID, and the third is
the process group ID.

The parent of the first process is array services daemon (arrayd, in this
example 678):

% ps -ef | grep 678
 root 678 1 0 Jul 13 ? 0:00 /usr/etc/arrayd

Runaway job cleanup
If the PAM that controls the parallel jobs dies or is accidentally killed, LSF
detects the broken connection to PAM and terminates the jobs that PAM started.
Using Platform LSF Parallel 37

Process Status Report

38
Process Status Report
After a parallel batch job terminates in a successful (Done) or failed (EXIT)
state LSF Parallel displays the status of all the processes. For example:

% pam -n 4 myjob
TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME
==== ========== ================ ======================== ==================
1 host1 myjob Done 03/31/98 10:31:58
2 host2 myjob Done 03/31/98 10:31:59
3 host3 myjob Done 03/31/98 10:31:59
3 host4 myjob Done 03/31/98 10:31:59

Job states
The possible job states for parallel jobs are described below:

Note Use the -t option of pam to suppress the process status report.

Status Description

Done Process successfully completed with exit code of 0

Exit (code) Process unsuccessfully completed with an exit code of code

Exit (status
unknown)

Connection broken; exit status unknown

Killed by PAM
(signal)

PAM shutdown process using signal

Local RES died RES died before process exited

Run Process running

Runaway Process is still running; cannot be killed by PAM

Signaled (signal) Process was terminated by signal

Suspend Process suspended

Undefined PAM unable to read process exit state

Unreachable PAM is unable to reach host after broken connection. No way to
determine the state of the process
Using Platform LSF Parallel

Chapter 4
Submitting Parallel Applications
Getting Host Information
The lshosts command is used to display information about LSF host
configurations including name, type, model, CPU normalization factor, number
of CPUs, total memory, and available resources. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
host1 SGI64 SGI4D35 2.0 1 96M 153M Yes (lsf_js irix gla)
host99 SUNSOL SunSparc 12.0 4 1024M 1930M Yes (solaris cs bigmem)
host2 LINUX I486_33 14.0 1 30M 64M Yes (linux)
host7 SUN41 SPARCSLC 3.0 1 15M 29M Yes (sparc bsd sun41)
host3 ALPHA~1 DEC5000 5.0 1 88M 384M Yes (cs bigmem alpha gla)
host6 ALPHA~1 DEC5000 5.0 1 84M 350M Yes (gla)
host4 SUNSOL SunSparc 12.0 2 256M 733M Yes (solaris cs bigmem)
host5 SGI SGIINDIG 15.0 1 96M 300M Yes (irix)
host8 SUNSOL SunSparc 12.0 1 56M 90M Yes (solaris cs bigmem)
Using Platform LSF Parallel 39

Getting Host Information

40
 Using Platform LSF Parallel

A P P E N D I X

A
Vendor MPI Implementations

Contents ◆ “HP MPI” on page 42

◆ “SGI MPI” on page 43

◆ “SUN HPC MPI” on page 46

◆ “IBM MPI” on page 48

◆ “OpenMP” on page 49
Using Platform LSF Parallel 41

HP MPI

42
HP MPI
When you use mpirun in stand-alone mode, you specify host names to be
used by the MPI job.

Automatic host allocation by LSF
To achieve better resource utilization, you can have LSF manage the allocation
of hosts, coordinating the start-up phase with mpirun.

This is done by preceding the regular HP MPI mpirun command with:

% bsub pam -mpi

Running a job on a single host
For example, to run a single-host job and have LSF select the host, the
command:

% mpirun -np 14 a.out

is entered as:

% bsub pam -mpi mpirun -np 14 a.out

Running a job on multiple hosts
For example, to run a multi-host job and have LSF select the hosts, the
command:

% mpirun -f appfile

is entered as:

% bsub pam -mpi mpirun -f appfile

where appfile contains the following entries:

-h host1 -np 8 a.out
-h host2 -np 4 b.out
-h host1 -np 2 c.out

In this example, the hosts host1 and host2 are treated as symbolic names and
refer to the actual hosts that LSF allocates to the job.

The a.out and c.out processes are guaranteed to run on the same host. The
b.out processes may run on a different host, depending on the resources
available and LSF scheduling algorithms.

More details on mpirun
For a complete list of mpirun options and environment variable controls, refer
to the mpirun man page and the HP MPI User's Guide version 1.4.
Using Platform LSF Parallel

Appendix A
Vendor MPI Implementations
SGI MPI

Compiling and linking your MPI program
You must use the SGI IRIX C compiler (cc by default). You cannot use mpicc
to build your programs.

For example, use the following compilation command to build the program
mpi_sgi:

cc -g -n32 -mips3 -o mpi_sgi mpi_sgi.c -lmpi

System requirements
SGI MPI has the following system requirements:

◆ Your SGI IRIX systems must be running IRIX 6.5 or higher with the latest
operating system patches applied. Use the uname command to determine
your system configuration. For example:
% uname -aR
IRIX64 hostA 6.5 6.5.7m 01200532 IP19

◆ SGI MPI 3.2.04 (MPT 1.3.0.3) released December 7 1999 or later with the
latest patches applied. Use the versions mpi and versions sma
commands to determine your installation. For example:

% versions mpi
I = Installed, R = Removed

 Name Date Description

I mpi 06/20/2000 MPI 3.2.0.7 (MPT 1.4)
I mpi.books 06/20/2000 IRIS InSight MPI Documentation (3.2.0.7)
I mpi.books.mpi_manual 06/20/2000 MPT: MPI Programmer's Manual (3.2.0.7)
I mpi.hdr 06/20/2000 MPI 3.2.0.7 Headers
I mpi.hdr.lib 06/20/2000 MPI 3.2.0.7 Library Headers
I mpi.man 06/20/2000 MPI 3.2.0.7 Man Pages
I mpi.man.base 06/20/2000 MPI 3.2.0.7 Man Pages
I mpi.relnotes 06/20/2000 MPT 1.4 Release Notes
I mpi.relnotes.base 06/20/2000 MPT 1.4 Release Notes
I mpi.sw 06/20/2000 MPI 3.2.0.7 Software
I mpi.sw.mpirun 06/20/2000 MPI 3.2.0.7 Program Launcher
I mpi.sw32 06/20/2000 MPI 3.2.0.7 N32 Libraries
I mpi.sw32.lib 06/20/2000 MPI 3.2.0.7 N32 DSO Libraries
I mpi.sw64 06/20/2000 MPI 3.2.0.7 N64 Libraries
I mpi.sw64.lib 06/20/2000 MPI 3.2.0.7 N64 DSO Libraries

% versions sma
I = Installed, R = Removed

 Name Date Description

I sma 06/20/2000 SMA 3.1.2.5 (MPT 1.4)
I sma.hdr 06/20/2000 SMA 3.1.2.5 Headers
I sma.hdr.lib 06/20/2000 SMA 3.1.2.5 Library Headers
Using Platform LSF Parallel 43

SGI MPI

44
I sma.man 06/20/2000 SMA 3.1.2.5 Man Pages
I sma.man.base 06/20/2000 SMA 3.1.2.5 Man Pages
I sma.sw32 06/20/2000 SMA 3.1.2.5 N32 Libraries
I sma.sw32.lib 06/20/2000 SMA 3.1.2.5 N32 DSO Libraries
I sma.sw64 06/20/2000 SMA 3.1.2.5 N64 Libraries
I sma.sw64.lib 06/20/2000 SMA 3.1.2.5 N64 DSO Libraries

Configuring LSF to work with SGI MPI
To use 32-bit or 64-bit SGI MPI with LSF Parallel, set the following parameters
in lsf.conf:

◆ Set LSF_VPLUGIN to the full path to the SGI MPI library libxmpi.so.

For example:

LSF_VPLUGIN=/usr/lib32/libxmpi.so

◆ LSF_PAM_USE_ASH=Y enables LSF to use the SGI IRIX Array Session
Handler (ASH) to propagate signals to the parallel jobs.

See the IRIX system documentation and the array_session(5) man page
for more information about array sessions.

libxmpi.so file
permission

For PAM to access the libxmpi.so library, the file permission mode must be
755 (-rwxr-xr-x).

Using the -mpi option
The -mpi option on the bsub and pam command line is equivalent to mpirun
in the SGI environment. Arguments following pam -mpi are treated exactly the
same as if mpirun were used.

Running a job on
a single host

To run a single-host job and have LSF select the host, the command:

% mpirun -np 4 a.out

is entered as:

% bsub -n 4 -m "hostA hostB" pam -mpi -auto_place a.out

Running a Job on
Multiple Hosts

To run a multihost job and have LSF select the hosts, the following command:

% mpirun -f appfile

is entered as:

% bsub -n 4 pam -mpi -f appfile

where appfile contains the following entries:

host1 -np 4 a.out
host2 -np 4 b.out
host1 -np 2 c.out

For a complete list of mpirun options and environment variable controls refer
to the SGI mpirun man page.
Using Platform LSF Parallel

Appendix A
Vendor MPI Implementations
Signal propagation
Typically, signals received by SBD are sent directly to PAM, not to the
individual parallel jobs started by PAM. LSF also allows you to signal currently
running PAM jobs or all the jobs started by a PAM script.

Set LSF_PAM_USE_ASH=Y in lsf.conf to enable LSF to use the SGI IRIX Array
Session Handler (ASH) to propagate signals to the parallel jobs.

See “Writing and using a PAM script” on page 36 for more information about
PAM scripts.

See the IRIX system documentation and the array_session(5) man page for
more information about array sessions.

Limitations
◆ SBD and MBD take a few seconds to get the process IDs and process group

IDs of the PAM jobs from the SGI MPI components, If you use bstop,
bresume, or bkill before this happens, uncontrolled MPI child processes
may be left running.

◆ If SIGKILL or SIGTERM is issued within the first 60 seconds of MPI job run
time, some orphan processes may be left on the system.

◆ If a PAM script does not exit when it receives an abnormal exit code from
pam, the script itself is not stopped by the run time limit job control action.

For example, if a PAM script job is submitted with a run time limit, and the
script exceeds this limit, the job control action only applies to the existing
processes from the PAM script component that exceeded the limit. Unless
the PAM script is designed to exit on the failure of the previous pam, the
next pam that runs will start.

◆ The following signals are supported:

❖ SIGKILL

❖ SIGINT

❖ SIGQUIT

❖ SIGTERM

❖ SIGSTOP

❖ SIGCONT

❖ SIGURG

The following signals are not fully supported:

❖ SIGTSTP

❖ SIGUSER1

❖ SIGUSER2
Using Platform LSF Parallel 45

SUN HPC MPI

46
SUN HPC MPI
When running LSF jobs on Sun platforms, you can include the Sun-specific
argument -sunhpc on the bsub command line, after any other bsub
arguments. The following arguments to –sunhpc provide additional control
over bsub behavior in a Sun HPC environment.

–n processes Specify the number of processes to run. Note that the bsub -n argument
specifies the number of CPUs to be used for the job. For example, to start a
48-process interactive job on PAM-enabled queue hpc that will wrap over at
least 4, and as many as 16, CPUs:

% bsub -I -n 4,16 -q hpc -sunhpc -n 48 jobname

Setting the minimum number of CPUs to a number greater than 1 raises the
possibility that, if there are fewer CPUs available than the minimum number
you specify, the job may fail to start. In this example, if fewer than 4 CPUs are
available, the job will not start. You can avoid this potential problem by setting
the minimum number of CPUs to 1. However, this introduces the potential cost
to performance of having the processes wrapped over a smaller number of
CPUs.

–P host:port Specify the PAM address of another job with which the new job should
colocate. The PAM address is the TCP socket used for communications
between the job and PAM. For example, to start a 4-CPU interactive job on
PAM-enabled queue hpc:

% bsub -I -n 4 -q hpc -sunhpc -P Athos:123 jobname

The new job is colocated with the job whose PAM is running on host Athos,
using port 123.

–j job_ID Specify the job ID of another job with which the new job should colocate.

–J job_name Specify the job name of another job with which the new job should colocate.

–s Specify that the job is to be spawned in the STOPPED state.

To identify processes in the STOPPED state, issue the ps command with the -
el argument:

orpheus 215 => ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
19 T 0 0 0 0 0 SY f0274e38 0 ? 0:00 sched

Here, the sched command is in STOPPED state, as indicated by the T entry
in the S (State) column.

Note that, when spawning a process in the STOPPED state under LSF, the name
of your program will not appear in the ps output. Instead, the stopped process
will be identified as a RES daemon.
Using Platform LSF Parallel

Appendix A
Vendor MPI Implementations
For example, to start a 1-CPU interactive job on PAM-enabled queue hpc, in
the STOPPED state:

% bsub -I -n 1 -q hpc -sunhpc -s jobname
Using Platform LSF Parallel 47

IBM MPI

48
IBM MPI

Overview
The IBM MPI Integration for LSF Parallel enhances the LSF 4.0-IBM SP2
Integration to launch and control jobs through LSF Parallel. The POE is still the
job launcher while PAM handles resource collection and job control.

LSF will automatically collect the resource use of tasks in the parallel job. You
can also automatically manage parallel jobs and perform operations on them
with commands such as bstop, bresume, etc.

Submitting POE jobs in LSF with LSF Parallel
Use pbsub along with pam -g 1 to submit a POE job in LSF and have LSF
Parallel manage it. In this way, PAM launches the POE and collects resource
usage for all running tasks in the parallel job. In addition, you can
automatically control the job through LSF commands (bstop, bresume, etc).

Prerequisites
If you use pam -g 1, the program to launch must be compiled using IBM's
mpcc for MPI support.

You can still use PAM to launch your jobs by not including the -g option, but
you will need to compile the job using using LSF mpicc for MPI support.

Syntax
pbsub [bsub_options] [pam [-g 1]] [-poe program_name [program_options] [poe_options]]

where:

-g Indicates to PAM that it is not the job launcher (the process responsible for
starting tasks on hosts).

1 This value must always be 1. Number of arguments after -poe where PAM can
find the parallel program name.

For additional details, see the pbsub man page.

Example
To submit an LSF-managed POE job that uses the switch in user-space (us)
mode, and runs on six processors:

% pbsub pam -g 1 -poe my_prog my_prog_arg -euilib us -euidevice css0 -procs 6

Previously parallel jobs launched by the IBM POE could not have their
resources collected and could not be managed by LSF. With this integration,
we wrap PAM around the POE to overcome this limitation.
Using Platform LSF Parallel

Appendix A
Vendor MPI Implementations
OpenMP

Overview
LSF Parallel provides the ability to start parallel jobs that use OpenMP to
communicate between process on shared-memory machines and MPI to
communicate across networked and non-shared memory machines.

This implementation allows you to specify the number of machines and to
reserve an equal number of processors per machine. When the job is
dispatched, PAM will only start 1 process per machine.

OpenMP
specification

The OpenMP specifications are owned and managed by the OpenMP
Architecture Review Board, see http://www.openmp.org.

Configuration
Set LSF_PAM_HOSTLIST_USE=unique in lsf.conf or the job’s environment.

Job submission
Specify the number of processors and the number of processes per machine.
For example, to reserve 32 processors and run 4 processes per machine:

% bsub -n 32 -R "span[ptile=4]" pam yourOpenMPJob

yourOpenMPJob will run across 8 machines (4/32=8) and PAM will start 1 MPI
process per machine.
Using Platform LSF Parallel 49

http://www.openmp.org

OpenMP

50
 Using Platform LSF Parallel

Index
Symbols
%a notation 23

B
batch job

interactive execution 35
monitor 31
resource usage 32
resume 31
submit 30
suspend 30
terminate 32

batch job state 28
batch job status 28
bjobs 31
bkill 32
bresume 31
bstop 30
bsub, pam option 30

C
C program, compile 21
command syntax 6
compile

C program 21
Fortran 77 program 21

D
DONE 28

E
execution host substitution 23
EXIT 29

F
Fortran 77 program, compile 21

H
host type substitution 23
HP MPI 42

I
interactive execution, batch job 35

J
job

interactive execution 35
monitor 31
resource usage 32
resume 31

submit 30
suspend 30
terminate 32

job state 28
DONE 28
EXIT 29
PEND 28
PSUSP 29
RUN 28
SSUSP 29
USUSP 29

job status 28

L
link

C program 21
Fortran 77 program 21

lshosts command 39

M
monitor, batch job 31
MPI

HP 42
OpenMP 49
SGI 43
SUN HPC 46

mpicc 21
mpif77 21

N
notation, %a 23

O
OpenMP MPI 49

P
pam

%a option 23
bsub option 30
command 35

PEND 28
PSUSP 29

R
resource usage, batch job 32
resume, batch job 31
RUN 28

S
SGI MPI 43
SSUSP 29
Using Platform LSF Parallel 51

52

Index
submit, batch job 30
substitution, host type 23
SUN HPC MPI 46
suspend, batch job 30
syntax 6

T
terminate, batch job 32

U
USUSP 29
Using Platform LSF Parallel

	Welcome
	About This Guide
	Who should read this book
	What you should already know
	Typographical conventions
	Command notation

	Learning About Parallel Programming
	Related publications

	Learning About Platform LSF
	World Wide Web and FTP
	Platform LSF manuals
	Technical support
	We’d like to hear from you

	About LSF Parallel
	What Is LSF Parallel?
	How Does LSF Parallel Work with Platform LSF?
	MPI library
	PAM
	Platform LSF

	LSF Parallel Architecture
	LSF Parallel components

	Using LSF Parallel
	Writing a Distributed Application
	Compiling and Linking the Application
	Running the Application
	Submitting to LSF
	Executing interactively

	Building Parallel Applications
	Including the Header File
	Include syntax

	Compiling and Linking
	C programs
	Fortran 77 programs

	Building a Heterogeneous Parallel Application
	LSF host type naming convention
	%a notation

	Submitting Parallel Applications
	Job Submission Methods
	Batch execution
	Interactive execution

	Batch Execution
	Batch Job Status
	Job states
	Parallel batch job behavior

	Running and Controlling Batch Jobs
	Submitting jobs (bsub)
	The pam option
	Suspending Jobs (bstop)
	Resuming Jobs (bresume)
	Monitoring Job Status (bjobs)
	Terminating Jobs (bkill)

	Running Heterogeneous Parallel Applications
	Interactive Execution
	The pam Command
	Writing and using a PAM script
	Run time job resource usage collection
	Queue-level job control
	Runaway job cleanup

	Process Status Report
	Job states

	Getting Host Information

	Vendor MPI Implementations
	HP MPI
	Automatic host allocation by LSF
	Running a job on a single host
	Running a job on multiple hosts
	More details on mpirun

	SGI MPI
	Compiling and linking your MPI program
	System requirements
	Configuring LSF to work with SGI MPI
	Using the -mpi option
	Signal propagation
	Limitations

	SUN HPC MPI
	IBM MPI
	Overview
	Submitting POE jobs in LSF with LSF Parallel
	Prerequisites
	Syntax
	Example

	OpenMP
	Overview
	Configuration
	Job submission

	Index

